Project Description
Supervisors
Dr Anna Jones (British Antarctic Survey) contact me
Dr Rebecca Fisher (Department of Earth Sciences, Royal Holloway, University of London)
Dr James France (Department of Earth Sciences, Royal Holloway, University of London)
Dr Mingxi Yang (Plymouth Marine Laboratory)
Dr Katrin Linse (British Antarctic Survey)
Dr Markus Frey (British Antarctic Survey)
Dr Tom Bell (Plymouth Marine Laboratory )
Project Background
Methane is a potent greenhouse gas, with a global warming potential ~85 times that of carbon dioxide on a 20-year timescale. Atmospheric methane concentrations are rising, but the global sources and sinks of methane are inadequately defined. Global ocean emissions remain highly uncertain: aerobic and anaerobic production mechanisms have been observed, as has direct seepage from the sea floor. A recent study reported the first observations of methane seepage from shallow nearshore waters in Antarctica, but little is known about the atmospheric significance of such seeps. Mechanistic understanding and quantification of ocean methane sources is critically needed to accurately project future marine emissions and atmospheric methane levels as Earth’s climate changes.
You will:
- Investigate existing ship-board methane observations from past Arctic/Antarctic campaigns plus from north-south Atlantic latitudinal transects. You will study ambient methane concentrations as well as derive methane emission fluxes.
- Establish the first polar-wide assessment of methane isotopic fingerprints using air samples provided by partner Arctic/Antarctic stations/ships.
We aim for your participation in a measurement cruise, sampling from the UK to Antarctica – observations in Antarctica targeting oceanic seeps, plus broader spatial surveys around algal blooms; concurrent air sampling to enable isotopic fingerprinting of methane sources using established (delta 13C) and novel (delta D) techniques. The project does not rely on cruise participation, and this project aspect is not guaranteed.
Training
You will be based primarily at BAS, but will work with leading scientists at 3 UK institutes to achieve the project goals. Regular meetings with supervisors by video-conference and, where possible, in person will keep the project on track and ensure smooth development of your scientific skills. You will learn cutting-edge data analysis techniques, instrument operation, analytical techniques, and fieldwork/planning skills. We will link to policy experts to provide exposure to policy development, aiming for a 3-month placement.
Should circumstances prevent overseas deployments, an alternative fieldwork component, quantifying specific UK anthropogenic methane sources is possible, using novel techniques from BAS and RHUL.
This studentship will be based at the British Antarctic Survey, and registered at Royal Holloway, University of London.
Person Specification
For this exciting project we seek applicants with a degree in Chemistry, Physics, or equivalent subjects, who can demonstrate strong numerical ability.