Observing ocean-atmosphere interaction from the poles to the tropics with an AutoNaut autonomous surface vehicle

CASE project with Autonaut Ltd (HEYWOOD_UENV19ARIES)

Observing ocean-atmosphere interaction from the poles to the tropics with an AutoNaut autonomous surface vehicle

CASE project with Autonaut Ltd (HEYWOOD_UENV19ARIES)

Project Description


Prof Karen Heywood (UEA Environmental Sciences)

Dr Ben Webber (UEA)

Peter Bromley (AutoNaut Ltd)


Typically the ocean absorbs heat from the atmosphere in tropical regions, and releases heat to the atmosphere in polar regions, thus regulating Earth’s climate. However, fluxes of heat and freshwater are poorly quantified by observations and models, partly because making ocean surface flux measurements is challenging.

This project will use a new technology, the ocean capable wave-propelled autonomous surface vehicle AutoNaut, to make measurements of fluxes between ocean and atmosphere in two key regions; the tropical Atlantic and the Antarctic.  Tropical fluxes are key to cloud formation and rainfall, so must be modelled correctly for prediction of monsoons or droughts.  Polar fluxes determine sea ice cover, and affect ice shelf melting and ocean circulation, but are sparsely observed and poorly modelled. Autonomous surface vehicles may provide a solution, so you will critically explore their potential.


You will make innovative measurements of atmosphere and ocean (e.g. wind speed, temperature) from UEA’s AutoNaut vehicle, and use these to calculate air-sea fluxes. You will be involved in field trials of the vehicle and sensors, working with CASE partner AutoNaut Ltd. We expect you to participate in two campaigns using AutoNaut and profiling gliders: Barbados in early 2020 as part of the Eurek4a project and Antarctica in early 2021. Using your fluxes, you will quantify biases in coupled forecasting/climate models. You will derive upper ocean heat budgets in each region, combining AutoNaut and ship measurements.


Training will be offered in oceanography, meteorology and numerical modelling. You will be trained in piloting and deployment of UEA’s fleet of autonomous vehicles. You will learn how to optimise measurements from sensors, calibration techniques, and data analysis. You will spend time at AutoNaut Ltd, acquiring skills in vehicle operation and insight into marine business opportunities, enabling you to shape UEA’s research using AutoNaut. You will participate in a research cruise, learning oceanographic and meteorological techniques.

Person specification

We seek someone interested in physical processes in both ocean and atmosphere, with a numerate, physical science degree, e.g. physics, meteorology, oceanography, natural sciences, geophysics or environmental sciences.  Experience of computer languages ( e.g. Matlab, Python) is advantageous.


  • Webber BGM, KJ Heywood, DP Stevens, P Dutrieux, EP Abrahamsen, A Jenkins, SS Jacobs, HK Ha, SH Lee, TW Kim (2017) Mechanisms driving variability in the ocean forcing of Pine Island Glacier, Nature Communications, 8, doi:10.1038/ncomms14507
  • Sanchez-Franks A, Kent EC, Matthews AJ, Webber BGM, Peatman SC, Vinayachandran PN. 2018. Intraseasonal Variability of Air-Sea Fluxes over the Bay of Bengal during the Southwest Monsoon. J. Climate. doi: 10.1175/JCLI-D-17-0652.1.
  • Matthews, A.J., D.B. Baranowski, K.J. Heywood, P.J. Flatau, S. Schmidtko (2014) The surface diurnal warm layer in the Indian Ocean during CINDY/DYNAMO, Journal of Climate, 27(24), 9101-9122. http://dx.doi.org/10.1175/JCLI-D-14-00222.1
  • Damerell GM, KJ Heywood, A Thompson, U Binetti and J Kaiser (2016) The Vertical Structure of Upper Ocean Variability at the Porcupine Abyssal Plain during 2012-2013, J. Geophys. Res. Oceans, 121, 3075–3089, doi:10.1002/2015JC011423.
  • Bony S., B. Stevens et al, 2017: EUREC4A: A field campaign to elucidate the couplings between clouds, convection and circulation. Surveys in Geophysics, https://doi.org/10.1007/s10712-017-9428-0 (www.eurec4a.eu)

Open for Applications

Apply Now