Hydrothermal inputs to global geochemical cycles: a novel high resolution approach to quantifying hydrothermal exchange

(HARRIS_P23ARIES)

Hydrothermal inputs to global geochemical cycles: a novel high resolution approach to quantifying hydrothermal exchange

(HARRIS_P23ARIES)

Project Description

Supervisors

Dr Michelle Harris (University of Plymouth, School of Geography, Earth and Environmental Sciences) – Contact me

Dr Rebecca Greenberger, California Institute of Technology

Professor Antony Morris, School of Geography, Earth and Environmental Sciences, University of Plymouth

 

Project background

Global geochemical cycles are fundamental to the Earth system; where, when, and how much elements are cycled through the Earth underpins a broad range of science, including our understanding of ocean chemistry and how the oceans will be impacted by future climate change. Geochemical fluxes from deep sea hydrothermal systems, where seawater circulates through the seafloor and exits back into oceans via hydrothermal vents, are a key component of global geochemical cycles. The ocean crust preserves this fluid/rock interaction (“hydrothermal alteration”) and by analysing these crustal rocks we can estimate the hydrothermal geochemical flux. However, such studies are limited by poor core recovery by scientific ocean drilling and the time-limitations of mineralogical and geochemical studies.

To advance our understanding of hydrothermal budgets, we need higher resolution characterisation of the distribution and composition of hydrothermal alteration throughout the ocean crust. To achieve this, micro-imaging infrared spectroscopy datasets can be collected on recovered drill core, where mineral specific spectral fingerprints can identify the minerals present at sub-mm resolution. This novel project aims to redefine our geochemical budgets by using preserved hydrothermal alteration sampled by drill cores from the Oman Drilling Project and from the International Ocean Discovery Program to calculate geologically robust estimates of hydrothermal geochemical fluxes.

Research methodology

The individual will (1) use micro-imaging spectroscopy datasets to define a set of hydrothermal alteration types in the drill-cores and interpret their abundance and distribution; (2) use representative samples of the different alteration types to characterise the geochemical (major and trace elements and isotopic compositions) variability, and (3) integrate the abundance of alteration types with their geochemical variability to calculate geologically robust geochemical fluxes.

Training

The individual will develop a range of industry and academia relevant skills, with specialist training in micro-imaging spectroscopy and a range of analytical geochemistry (including XRF, ICP-MS and isotopic analysis). The successful candidate will join an international team of researchers including the broader Oman Drilling Project Science team and the ocean drilling community.

Person specification

This PhD is suitable for individuals with degrees in Geology/Earth Sciences with interests in petrology, geochemistry and big-picture Earth Science questions.

References

  • Rebecca N. Greenberger, Michelle Harris, Bethany L. Ehlmann, Molly Crotteau, Peter B. Kelemen, Craig E. Manning, Damon A. H. Teagle, the Oman Drilling Project Science Team (inc. Tony Morris) (2021) Hydrothermal Alteration of the Ocean Crust and Patterns in Mineralization with Depth as Measured by Micro-Imaging Infrared Spectroscopy. JGR Solid Earth. doi.org/10.1029/2021JB021976
  • Michelle Harris, Rosalind M. Coggon, Martin Wood, Christopher Smith-Duque, Tim J Henstock, Damon A. H. Teagle (2017) Hydrothermal cooling of the ocean crust: Insights from ODP Hole 1256D. Earth and Planetary Science Letters, 462:110–121. https://doi.org/10.1016/j.epsl.2017.01.010
  • Rosalind M. Coggon, Damon A. H. Teagle, Michelle Harris, Gary J. Davidson, Jeffrey C. Alt, Tim S. Brewer (2016) Hydrothermal contributions to global biogeochemical cycles: Insights from the Macquarie Island ophiolite. Lithos, 264:329–347. https://doi.org/10.1016/j.lithos.2016.08.024
  • Molly A. Crotteau, Rebecca N. Greenberger, Bethany L. Ehlmann, George R. Rossman, Michelle Harris, Peter B. Kelemen, Damon A. H. Teagle, the Oman Drilling Project Phase 1 Science Party Characterizing Hydration of the Ocean Crust Using Shortwave Infrared Microimaging Spectroscopy of ICDP Oman Drilling Project Cores. JGR Solid Earth. https://doi.org/10.1029/2021JB022676
  • Derek Vance, Damon A. H. Teagle, Gavin L. Foster (2009) Variable Quaternary chemical weathering fluxes and imbalances in marine geochemical budgets. Nature, 458(7237):493–496. https://doi.org/10.1038/nature07828

Key Information

  • This project has been shortlisted for funding by the ARIES NERC DTP and will start on 1st October 2023. The closing date for applications is 23:59 on 19th May 2023.
  • Successful candidates who meet UKRI’s eligibility criteria will be awarded a NERC studentship, which covers fees, stipend (£18,622 p.a. for 2023/24) and research funding. Please note that all international awards have been made for our programme for 2023 so we will not be accepting applications from international candidates,
  • ARIES students benefit from bespoke graduate training and ARIES provides £2,500 to every student for access to external training, travel and conferences, on top of all Research Costs associated with the project. Excellent applicants from quantitative disciplines with limited experience in environmental sciences may be considered for an additional 3-month stipend to take advanced-level courses.
  • ARIES is committed to equality, diversity, widening participation and inclusion in all areas of its operation. We encourage enquiries and applications from all sections of the community regardless of gender, ethnicity, disability, age, sexual orientation and transgender status. Academic qualifications are considered alongside non-academic experience, and our recruitment process considers potential with the same weighting as past experience.
  • All ARIES studentships may be undertaken on a part-time or full-time basis, visa requirements notwithstanding
  • For further information, please contact the supervisor. To apply for this Studentship follow the instructions at the bottom of the page or click the 'apply now' link.
  • ARIES is required by our funders to collect Equality and Diversity Information from all of our applicants. The information you provide will be used solely for monitoring and statistical purposes; it will remain confidential, and will be stored on the UEA sharepoint server. Data will not be shared with those involved in making decisions on the award of Studentships, and will have no influence on the success of your application. It will only be shared outside of this group in an anonymised and aggregated form. You will be ask to complete the form by the University to which you apply.

Apply Now

Apply Now